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Abstract

This paper present a real-time implementable trajectory optimization framework for autonomous
suspended load operations in outdoor environments. The framework solves the posed optimal control
problem with the iteration-based differential dynamic programming (DDP) algorithm. The algorithm
utilizes a variational integrator to propagate the modeled system’s state configuration and linearize
the resulting discrete dynamics. It is shown that the variational integrator is an excellent candidate for
real-time implementation since it remains accurate despite relatively large discretization time steps.
Therefore, the computational effort of the DDP algorithm can be mitigated through the reduction of
discrete time points. The state of the slung load is estimated via an augmentation to the existing
navigation system that utilizes only vision-based measurements of the load. Simulation studies and a
flight test are presented to demonstrate the effectiveness of the proposed framework.

Nomenclature

DG(Y ) derivative of G(Y ) with respect to Y
DiG(Y1, . . . , Yp) derivative of G(Y1, Y2 . . . , Yp) with respect to its ith argument, Yi
GYi(Y1, . . . , Yp) derivative of G(Y1, Y2 . . . , Yp) with respect to Yi
GYi,Yj(Y1, . . . , Yp) second order mixed derivative of G(Y1, Y2 . . . , Yp) with respect to Yi and Yj

1 Introduction

Suspended load operations have long been studied for manned and unmanned systems. During the 1970s,
assisting pilots by actively damping the carried load through specialized hardware [1–3] or feedback control
[4–7] was the main focus of suspended load operations research. Recently, extensive piloted flight tests for a
task-tailored control system with fuselage and cable angle/rate feedback has shown a significant reduction
of load set-down time and a large improvement in average handling qualities [8, 9]. The development of
agile indoor quadrotor systems has spurred the advancement of autonomous methods for suspended load
operations. Geometric control methods [10, 11], a coupled adaptive feedback and dynamic programming
approach [12–14], and reinforcement learning techniques [15,16] have been proposed for indoor suspended
load operations. However, it should be noted these methods have only been tested on highly agile, indoor
quadrotors with the assistance of a precise position tracker, typically VICON, and, in some cases, extensive
offboard computing. In addition, some of the research may not be applicable to larger platforms that are
far less agile, such as the GTMax, or for use in outdoor and uncontrolled environments considered in this
paper. For comparison, the GTMax, a modified Yamaha RMAX, weights 64 kg and is powered with a
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gasoline engine while the quadrotor used in Reference [15], a AscTec Hummingbird, weights 0.71 kg and
uses electric motors.

There has been limited work on autonomous outdoor suspended load operations. Since precise mea-
surements from a VICON system are not available, a GPS aided inertial navigation system is typically
used to estimate the state of the vehicle. A variety of methods exist to estimate the state of the load: use
of a magnetic encoder [17], attaching an IMU to the load [18], and image processing using a downward
facing camera [19]. An input shaping method, previously implemented on cranes, has been implemented
and successfully flight tested on the GTMax platform [20–23]. Delayed cable angle feedback has also been
successfully demonstrated [24,25]. These techniques have been used for load delivery onto a moving plat-
form [24]. A simple torque compensator method has shown to allow for single vehicle and multi-vehicle load
transportation [17]. Note that these methods generally try to reduce load oscillations through modification
of the system’s input and do not optimized an objective or cost. Lastly, the Kaman K-MAX/BURRO
autonomous helicopter has completed successful military suspended load operations in Afghanistan [26–28].

The differential dynamic programming (DDP) algorithm is an iteration-based numerical method used
to generate solutions to optimal control problems. By computing a quadratic approximation of the cost-
to-go function and linearizing the system’s dynamics around a nominal trajectory the DDP algorithm is
able to obtain optimal open and closed loop control policies [29]. The algorithm is iterative in nature
as it updates the optimized input sequentially such that each successive iteration further reduces the
considered cost. The same basic principles were used to develop iterative linear quadratic regulators
(iLQR) [30, 31]. The algorithm has been successfully implemented in simulation to enable robust bipedal
robotic walking [32]. Extensions of the DDP algorithm have been developed in order to address state and
control constraints [33,34].

It should be expected that the manner in which the DDP algorithm propagates the modeled system’s
configuration and linearizes the resultant discrete dynamics has a large effect on its performance. In this
paper, a variational integrator and its linearization are utilized by the optimization framework. Utilizing
a variational integrator within the DDP algorithm has been shown to provide significant advantages when
compared to utilizing Euler methods [35]. Specifically, the algorithm’s performance is far less dependent on
the size of the discretization time step. Therefore, the discretization time step can be made larger without
sacrificing much performance and results in a reduction of computational effort. A complete and rigorous
treatment of variational integrators is presented in References [36] and [37]. The variational integrator and
its first-order linearization used in this paper were first reported in References [37] and [38], respectively.
Variational integrators have been shown to be scalable and implementable for generic mechanical systems
in generalized coordinates [39]. Furthermore, variational integrators were utilized to assist in a real-time
implementation of an iterative projection-based optimization method [40].

This paper presents a real-time implementable trajectory optimization framework for autonomous sus-
pended load operations. The computational effort required for the framework is mitigated by the use of
variational integrators and a simplified, but representative, system model. The unmanned vehicle sys-
tem’s existing guidance, navigation, and control architecture is utilized and, therefore, results in minimal
software reconfiguration. Furthermore, the state of the slung load is estimated via an augmentation to
the existing navigation system and utilizes only vision-based measurements of the load. It is shown in
simulation studies and a flight test the framework is real-time onboard implementable despite a relatively
large time horizon of 12 seconds. The vehicle was able to maneuver the suspended load to track reference
trajectories.

The remainder of the paper is organized as follows: Sections 2 and 3 review variational integrators and
differential dynamic programming, respectively. The flight test vehicle and the simulation environment in
which the proposed framework was implemented are outlined in Section 4. The vision-based load state
estimation method is described in Section 5. Section 6 presents the proposed trajectory optimization
framework for autonomous suspended load operations. Sections 7 and 8 present results obtained from
simulation studies and the conducted flight test, respectively. Finally, Sections 9 and 10 give analysis of
the results shown in Sections 7 and 8 and final conclusions, respectively.
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2 A Variational Integrator

The variational integrator and its linearization utilized in the presented trajectory optimization framework
is reviewed in this section. This integration scheme enables real-time implementation of the DDP algorithm
due to its ability to accurately propagate a system’s configuration despite relatively large discretization
time steps. Furthermore, the reviewed variational integrator and its linearization have been shown to be
better suited than Euler methods for algorithms that rely heavily on dynamical system propagation and
linearization [35].

To begin our discussion, the formulation of the Euler-Lagrangian equations is reviewed by considering
the Lagrangian of a dynamical system represented as

L(q(t), q̇(t)) = T (q(t), q̇(t))− V (q(t)), (1)

where q is the state configuration vector, q̇ is its time derivative, T (q(t), q̇(t)) describes the system’s kinetic
energy, and V (q(t)) describes the system’s potential energy. The action, S, is defined as

S[q(t)] =

∫ tf

t0

L(q(τ), q̇(τ)) dτ. (2)

The Least Action principle is used to derive the variational relation δS[q(t)] = δ
∫ tf
t0
L(q(τ), q̇(τ)) dτ = 0,

and results, when minimized, in the classical Euler-Lagrange equations [41]:

∂

∂t

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) = 0. (3)

Note equation (3) provides the fundamental characteristics of a dynamical system and describes how
the system configuration vector propagates through time. However, it does not provide any method or
algorithm that can be used to solve for the trajectory of the system. Simply using numerical integration
schemes developed for general second order differential equations will result in numerical errors since the
system’s fundamental characteristics are ignored.

On the other hand, variational integrators approximate the continuous trajectory of mechanical systems
with a sequence of discrete points while ensuring (or strongly enforcing) the conservation of fundamental
quantities such as momentum and energy [37]. Specifically, for the variational integrator considered in
this paper, a sequence of system configuration vectors {(t0, q0), (t1, q1), . . . , (tn, qn)} is found such that the
continuous system trajectory is approximated as qm ≈ q(tm) where ∆t = ti+1− ti is the discretization time
step. Derivations for the same variational integrator presented here are given in References [37,42].

The derivation of the variational integrator begins with approximating the action integral over a small
time interval with a generalized midpoint approximation as

Ld(qk, qk+1) = L((1− α)qk + αqk,
qk+1 − qk

∆t
)∆t ≈

∫ tk+1

tk

L(q(τ), q̇(τ)) dτ, (4)

where α ∈ [0, 1] defines the integration approximation and Ld(qk, qk+1) is referred to as the discrete La-
grangian. The midpoint approximation defined with α = 1/2 results in second order accuracy as discussed
in Reference [43]. The action integral defined in equation (2) can be approximated as a sum of discrete
Lagrangians:

S[q(t)] ≈
n−1∑
k=0

Ld(qk, qk+1). (5)

The Least Action principle is now used to derive the following variational relation

δS[q(t)] ≈
n−1∑
k=0

(D1Ld(qk, qk+1) · δqk +D2Ld(qk, qk+1) · δqk+1) = 0. (6)
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Equivalently,

δS[q(t)] ≈
n−1∑
k=1

(D1Ld(qk, qk+1) +D2Ld(qk−1, qk)) · δqk = 0, (7)

since δq0 = δqn = 0. Note that the Least Action principle requires that the variations of the action sum
be zero for any δqk. As a result, the Discrete Euler-Lagrange (DEL) equation is derived as

D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0. (8)

Notice that the DEL equation is the discrete time equivalent to the classical Euler-Lagrange equation
(3). However, the DEL equation provides a manner in which the system’s discrete configuration can be
propagated. Given two consecutive system configurations qk and qk−1,

f(qk+1) = D1Ld(qk, qk+1) +D2Ld(qk−1, qk) = 0, (9)

can be solve implicitly for the next configuration qk+1. Therefore, given q0 and q1 equation (9) can be solved
iteratively to find q2, . . . , qn. Note that propagating the system in this manner ensures that the variational
relation described in equation (7) is satisfied. A simple root finder algorithm outline in Algorithm 1 can
be used to solve equation (9). The required derivative Df(·) is given as

Df(qk+1) = D2D1Ld(qk, qk+1). (10)

Algorithm 1 Simple Root Finder

while |f(qk+1)| > εtol do
qk+1 ← qk+1 −Df−1(qk+1) · f(qk+1)

end while

The required derivatives in equations (9), (10), and those needed for the linearization of the integrator
equations can be found using the chain rule and equation (4) [39]:

D1Ld(qk, qk+1) =
∂

∂q
L(q, q̇)(1− α)∆t− ∂

∂q̇
L(q, q̇), (11)

D2Ld(qk, qk+1) =
∂

∂q
L(q, q̇)α∆t+

∂

∂q̇
L(q, q̇), (12)

D1D1Ld(qk, qk+1) =
∂2

∂q∂q
L(q, q̇)(1− α)2∆t− ∂2

∂q̇∂q
L(q, q̇)(1− α)

− ∂2

∂q∂q̇
L(q, q̇)(1− α) +

∂2

∂q̇∂q̇
L(q, q̇)

1

∆t
, (13)

D2D1Ld(qk, qk+1) =
∂2

∂q∂q
L(q, q̇)(1− α)α∆t+

∂2

∂q̇∂q
L(q, q̇)(1− α)

− ∂2

∂q∂q̇
L(q, q̇)α− ∂2

∂q̇∂q̇
L(q, q̇)

1

∆t
. (14)

2.1 The Forced Case

External forces can also be incorporated into the derivation of the variational integrator. When consid-
ering continuous trajectories, the Lagrange-d’Alembert principle is used to generalize the Euler-Lagrange
equation by modifying the variation of the action, δS, to

δS[q(t)] = δ

∫ tf

t0

L(q(τ), q̇(τ)) dτ +

∫ tf

t0

F (q(τ), q̇(τ), u(τ)) · δq dτ (15)
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where F (q(τ), q̇(τ), u(τ)) represents the total external forcing acting on the system and u is the system’s
control input (if any). Minimization of the variational relation leads to the forced Euler-Lagrange equation:

∂

∂t

∂L

∂q̇
(q, q̇)− ∂L

∂q
(q, q̇) = F (q(t), q̇(t), u(t). (16)

Similar to the discretization of the Lagrangian, the left, F−d (qk, qk+1, uk), and right, F+
d (qk, qk+1, uk), discrete

forces are introduce in order to obtain a discrete equivalent to equation (16). The variation of the continuous
external force is approximated over a small time interval as

F−d (qk, qk+1, uk) · δqk + F+
d (qk, qk+1, uk) · δqk+1 ≈

∫ tk+1

tk

F (q(τ), q̇(τ), u(τ)) · δq dτ (17)

where a generalized midpoint approximation can be used to define the the left and right discrete forces as

F±d (qk, qk+1, uk) =
1

2
F ((1− α)qk + αqk+1,

qk+1 − qk
∆t

, uk), (18)

and uk = u(tk). The variational relation given in equation (7) can then be modified and the resulting
forced DEL equation is given as

D1Ld(qk, qk+1) + F−d (qk, qk+1, uk) +D2Ld(qk−1, qk) + F+
d (qk−1, qk, uk−1) = 0. (19)

or, equivalently, the forced DEL equation can be written in its position-momentum form

pk +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk) = 0, (20)

pk = D2Ld(qk−1, qk) + F+
d (qk−1, qk, uk−1). (21)

Note that pk does not depend on qk+1 and in the unforced case pk is the momentum quantity conserved by
the integrator [39, 43]. Furthermore, the previously defined two-step mapping (qk−1, qk) → (qk+1) is now
replaced with a one step mapping (qk, pk) → (qk+1, pk+1). The integrator equation and its derivative are
now defined as

f(qk+1) = pk +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk), (22)

Df(qk+1) = D2D1Ld(qk, qk+1) +D2F
−
d (qk, qk+1, uk). (23)

As before, given q0, q1, and the control input, u(t), equation (22) can be solved iteratively to find q2, . . . , qn.

2.2 The Constrained Case

Holonomic constraints can also be incorporated into the presented variational integrator. Specifically, the
considered constraints are of the form

h(q) = [h1(q), . . . , hm(q)]T (24)

where the system configuration is said to be valid if h(q) = 0. Holomonic constraints restrict the set
of possible system configurations to lie in a sub-manifold. Therefore, during propagation the computed
system configurations should lie in the desired sub-manifold. The forced DEL equations can be modified
to incorporate holonomic constraints [44]:

D1Ld(qk, qk+1) + F−d (qk, qk+1, uk)+D2Ld(qk−1, qk) + F+
d (qk−1, qk, uk−1) = DhT(qk)λk, (25)

h(qk+1) = 0. (26)
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The term DhT(qk)λk represents a force that imposes the constraint and λk is the discrete Lagrange multi-
plier that defines the magnitude of this force. Note that the inclusion of the equation h(qk+1) = 0 ensures
that each discrete system configuration, qk, observes the defined holomonic constraints. The integrator
equation and its derivative are now defined as

f(qk+1, λk) =

[
pk +D1Ld(qk, qk+1) + F−d (qk, qk+1, uk)−DhT(qk)λk

h(qk+1)

]
, (27)

Df(qk+1, λk) =

[
D2D1Ld(qk, qk+1) +D2F

−
d (qk, qk+1, uk) −DhT(qk)

Dh(qk+1) 0

]
. (28)

The system configuration, qk, and the Lagrange multipliers, λk, are propagated. The simple root finder
algorithm is modified such that the estimate of the discrete Lagrangian multipliers are also updated:[

qk+1

λk

]
←
[
qk+1

λk

]
−Df−1(qk+1, λk) · f(qk+1, λk) (29)

2.3 Propagation of a Mass-Spring System

In order to further elucidate the reviewed variational integrator, consider a simple linear mass-spring system
with unity mass and spring stiffness constant of 5 N/m. The Lagrangian of the system is computed as

L(q, q̇) =
1

2
q̇2 − 5

2
q2. (30)

If α = 1
2

then the resulting DEL equations in the position-momentum form are computed as

pk −
5(qk+1 + qk)

4
∆t− qk+1 − qk

∆t
= 0, (31)

pk+1 = −5(qk+1 + qk)

4
∆t+

qk+1 − qk
∆t

, (32)

and the derivative of the integrator equation is Df(qk+1) = −5
4
∆t− 1

∆t
.

It is assumed that the initial conditions are given as q(t0) = 0 and q̇(t0) = 1. In order to be consistent
with the midpoint approximation used in this example (α = 1

2
) initial conditions were set as q1 = 1

2
q̇(t0)∆t

and q0 = −1
2
q̇(t0)∆t. Note that the selection of q0 and q1 is not unique. The quantity p1 can be found

through equation (32) and equation (31) can then be used to obtain q2. This process can be repeated
indefinitely.

Alternatively, the Euler method can be used to propagate the system configuration such that[
qk+1

q̇k+1

]
=

[
1 ∆t

−5qk∆t 1

] [
qk
q̇k

]
. (33)

Figure 1 shows the computed system trajectories along with the analytic solution (q(t) = 1√
5
sin(
√

5t))
when ∆t = 0.005 and ∆t = 0.05. Notice that the variational integrator is able to maintain its accuracy
despite the increase in the discretization time step while the Euler method deteriorates. As a result, when
implementing algorithms that rely on discrete system dynamics less discretization points are needed if the
presented variational integrator is utilized. For example, if a DDP algorithm was implemented with a
time horizon of 10 seconds the number of discretization points can be reduced by 1800 if the time step
if increased from ∆t = 0.005 to ∆t = 0.05. Therefore, utilizing a variational integrator enables the DDP
algorithm to use less memory and leads to a reduction in computational effort.

6



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
System Trajectory Propagation, ∆t = 0.005

q
(t
)

Time (sec)

 

 

Variational Integrator
Euler Method
Analytic Solution

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
System Trajectory Propagation, ∆t = 0.05

q
(t
)

Time (sec)

 

 

Variational Integrator
Euler Method
Analytic Solution

(b)

Figure 1: (a) and (b): Propagation of the mass position, q(t), with initial condition q(t0) = 0 and q̇(t0) = 1.
Solid and dotted lines indicate that the propagation was obtained using a variational integrator and the
Euler method, respectively, while the dashed lines display the analytic solution.

2.4 Structured Linearization of the Discrete Dynaimcs

As discussed in Reference [38] the one-step mapping (20) implicitly defines the function

xk+1 = g(xk, uk), (34)

where xk+1 = [pT
k+1, q

T
k+1]T. The linearization of the implicitly defined function g(xk, uk) can be found

explicitly (first shown in References [38] and [45]). Furthermore, the linearization is computed using only
partial derivatives of the discrete Lagrangian and forces. Specifically, the derived forced DEL equations
(20) and (21) are used to obtain a first-order linearization of the discrete dynamics of the form

δxk+1 = gx(xk, uk)δxk + gu(xk, uk)δuk, (35)

or, equivalently, [
δqk+1

δpk+1

]
=

[
∂qk+1

∂qk

∂qk+1

∂pk
∂pk+1

∂qk

∂pk+1

∂pk

] [
δqk
δpk

]
+

[
∂qk+1

∂uk
∂pk+1

∂uk

]
δuk. (36)

To begin, equation (20) is implicitly differentiated with respect to qk:

∂

∂qk
[pk +D1Lk+1 + F−k+1 = 0],

0 +D1D1Lk+1 +D2D1Lk+1
∂qk+1

∂qk
+D1F

−
k+1 +D2F

−
k+1

∂qk+1

∂qk
= 0,

∂qk+1

∂qk
= −M−1

k+1[D1D1Lk+1 +D1F
−
k+1], (37)

where Mk+1 = D2D1Lk+1 +D2F
−
k+1 is assumed to be non-singular at qk, pk, and uk. For ease of exposition,

the discrete Lagrangian notation is condensed to Lk+1 = Ld(qk, qk+1) and that of the discrete forces to
F±k+1 = F±d (qk, qk+1, uk). Repeating this procedure yields

∂qk+1

∂pk
= −M−1

k+1, (38)

∂qk+1

∂uk
= −M−1

k+1D3F
−
k+1. (39)
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The remaining derivatives can be found by explicitly differentiating (21):

∂pk+1

∂qk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂qk
+D1D2Lk+1 +D1F

+
k+1, (40)

∂pk+1

∂pk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂pk
, (41)

∂pk+1

∂uk
= [D2D2Lk+1 +D2F

+
k+1]

∂qk+1

∂uk
+D3F

+
k+1. (42)

Note that qk+1 is needed in order to evaluate the derivatives and can be found by solving equation (20). A
linearization for the constrained case and second-order linearizations (constrained and unconstrained) are
formulated in References [38] and [45].

3 Differential Dynamic Programming

In this section the differential dynamic programming (DDP) algorithm is reviewed. Given a nominal input
and associated system trajectory the algorithm finds the optimal control variation to minimize a given cost.
The nominal input is then updated and the process is repeated. An abridged derivation of the algorithm
is given here while References [29] and [46] provide a complete treatment of the topic.

To begin, consider the optimal control problem given by a cost under minimization of the form

J(x, u, t) = h(x(tf)) +

∫ tf

t0

l(x(τ), u(τ), τ) dτ, (43)

subjected to the dynamics given by

dx

dt
= f(x, u), x0 = x(t0), (44)

where h(x(tf)) is the terminal cost, l(x(t), u(t), t) is the running cost, x ∈ Rn is the state vector, and
u ∈ Rp is the control input. The DDP algorithm attempts to find the optimal sequence of discrete
inputs to minimize the given cost such that the continuous input is then defined as u(Tk) ∈ uk, Tk =
[t0 +k∆t, t0 +(k+1)∆t) where ∆t is the discretization time step. As a result, the algorithm approximates
continuous system trajectories by a sequence of state vectors such that x1 = x(t0), x2 = x(t0 + ∆t), . . . ,
xN = x(tf). The appropriate selection of ∆t depends on the given system dynamics and cost function.
It should be noted that the DDP algorithm is iterative. That is, given a sequence of discrete inputs
Ū = {ū1, . . . , ūN−1} the algorithm finds the optimal control deviation, δU?, such that the control input is
updated as

Ūnew = Ū + γδU?
i , (45)

where γ is a user defined constant or is selected from an automated process (e.g. an Armijo line search [47]).
Several iterations may be needed in order to arrive at a control input that is sufficiently close to the optimal
solution.

To begin the derivation of the DDP algorithm it is assumed that a sequence of nominal discrete inputs
Ū = {ū1, . . . , ūN−1} is used to propagate the associated state trajectory X̄ = {x̄1, . . . , x̄N}. Next, the
first-order linearization of the discrete system dynamics along the nominal trajectory of the form

δxk+1 = Akδxk +Bkδuk (46)

is found. In this paper the linearization presented in equation (36) is used to define Ak and Bk. Other
integration schemes and their associated linearizations can be used. For example, the Euler method can
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be utilized such that Ak = In + fx(x, u)∆t and Bk = fu(x, u)∆t. However, utilizing variational integrators
within the DDP algorithm provides significant advantages when compared to utilizing Euler methods [35].
Specifically, the performance of the DDP algorithm is less dependent on the size of the discretization
time step when variational integrators are used. Therefore, ∆t can be made larger without sacrificing
much performance and, as a result, the computational effort of implementing the DDP algorithm can be
mitigated.

Utilizing the derived first-order linearization of the system dynamics a second-order expansion of the
cost-to-go function,

V (x(t), t) = min
u
J(x, u, t), (47)

around the nominal trajectory, X̄i, is obtained:

V (x̄+ δx) = V (x̄) + Vx(x̄)Tδx+
1

2
δxTVxx(x̄)δx, (48)

or, in its approximated discrete form,

V (x̄k+1 + δxk+1) = V (x̄k+1) + Vx(x̄k+1)Tδxk+1 + δxT
k+1Vxx(x̄k+1)δxk+1,

= V (x̄k+1) + Vx(x̄k+1)T(Akδxk +Bkδuk) + δxT
kA

T
k Vxx(x̄k+1)Bkδuk

+
1

2
δxT

kA
T
k Vxx(x̄k+1)Akδxk +

1

2
δuT

kB
T
k Vxx(x̄k+1)Bkδuk.

Now consider the discretized state action value function defined as

Q(xk, uk) = L(xk, uk) + V (xk+1) (49)

where L(xk, uk) = l(xk, uk)∆t. By invoking Bellman’s Principle of Optimality it is known that the optimal
control deviation, δU?, is found by minimizing the state action value. A local second-order expansion of
the state action value function is derived as

Q(x̄k + δxk, ūk + δuk) = Q(x̄k, ūk) + δuT
kQu(x̄k, ūk) + δxT

kQx(x̄k, ūk) +
1

2
δuT

kQuu(x̄k, ūk)δuk

+
1

2
δxT

kQxx(x̄k, ūk)δxk + δuT
kQux(x̄k, ūk)δxk, (50)

where

Qx(x̄k, ūk) = Lx(x̄k, ūk) + AT
k Vx(x̄k+1),

Qu(x̄k, ūk) = Lu(x̄k, ūk) +BT
k Vx(x̄k+1),

Qxx(x̄k, ūk) = Lxx(x̄k, ūk) + AT
k Vxx(x̄k+1)Ak,

Quu(x̄k, ūk) = Luu(x̄k, ūk) +BT
k Vxx(x̄k+1)Bk,

Qxu(x̄k, ūk) = Lxu(x̄k, ūk) + AT
k Vxx(x̄k+1)Bk. (51)

The optimal control deviation is computed by minimizing the state action value as

δu?k = arg min
δuk

Q(x̄k + δxk, ūk + δuk),

= −Quu(x̄k, ūk)
−1(Qu(x̄k, ūk) +Qux(x̄k, ūk)δx

?
k). (52)

where the optimal state deviation is propagated as

δx?k = Akδx
?
k−1 +Bkδu

?
k−1, δx?0 = 0. (53)
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Note that equation (52) contains a feedforward and a feedback component. Therefore, the term Q−1
uuQux

gives the optimal state feedback for a particular iteration. The feedback component attempts to keep the
system’s trajectory near the optimized trajectory, X̄. Explicitly, supposing that x(tk) is the state of the
system at time tk then the input signal is given as

v̄(tk) = ū(tk)−Q−1
uu (x̄k, ūk)

−1Qxu(x̄k, ūk)(x(tk)− x̄k). (54)

Plugging δu?k back into (50) yields a backward propagating approximation of the second-order expansion
of the cost-to-go function:

V (x̄k) = V (x̄k+1) + L(x̄k, ūk)−Qu(x̄k, ūk)Qu(x̄k, ūk)
−1Qu(x̄k, ūk+1), (55)

Vx(x̄k) = Qx(x̄k, ūk)−Qu(x̄k, ūk)Qu(x̄k, ūk)
−1QT

xu(x̄k, ūk), (56)

Vxx(x̄k) = Qxx(x̄k, ūk)−Qxu(x̄k, ūk)Qu(x̄k, ūk)
−1QT

xu(x̄k, ūk), (57)

where the initial conditions are derived from the terminal cost, h(·), as V (x̄N) = h(x̄N), Vx(x̄N) =
hx(x̄N), Vxx(x̄N) = hxx(x̄N).

This completes the derivation of the DDP algorithm. The derived optimal control deviation, δU?, is
used to update the nominal input as shown in equation (45). In the implementation presented in this
paper an Armijo line search is used to automatically select an appropriate step size [47]. The process can
then be repeated using the updated input as the new nominal input. The DDP algorithm is outlined in
Algorithm 2.

Algorithm 2 The DDP Algorithm with an Armijo Line Search

Require:
Initial discrete control input u(t), algorithm parameters κ, β, ε
cost function J(x, u, t), system dynamics dx = f(x, u) dt
while Cost updates results in more than ε in difference do

Propagate the discretized trajectory using the nominal input Ū
Linearize the value function and system dynamics along the trajectory
Approximate the value function through back-propagation
Compute δU? and δX?

while Costp > Cost + κβ
(∑N−1

K=1

(
LT
x (xk, uk)δx

?
k + LT

u (xk, uk)δu
?
k

)
+ hT

x (xN , uN)δx?N

)
do

Find the proposed input Up ← Ū + βjδU? and the corresponding trajectory, Xp

Find proposed cost Costp ← J(Xp, Up, t) and update j ← j + 1 if needed
end while
Update the control, trajectory and Cost: Ū ← Up, X̄ ← Xp,Cost← Costp

end while

4 Flight Test Vehicle and Simulation Environment

Simulation studies and flight tests used in the validation of the proposed trajectory optimization framework
were conducted with a modified Yamaha RMAX helicopter UAV, dubbed the GTMax [48]. Custom avionics
and the flight control software needed for autonomous flight were designed at the Georgia Tech Unmanned
Aerial Vehicle Research Facility (UAVRF). The GTMax vehicle is equipped with an extensive sensor suite
including an Inertial Science IMU, short-range sonar, magnetometer, and differential GPS [48, 49]. In
addition, the vehicle is instrumented with a Prosilica GC 1380 camera for vision-based operations [50–52].
Figure 2b shows the GTMax flight test platform.

Two separate onboard processes, primary and secondary, are used for all onboard computational re-
quirements and are executed on a single onboard computer with an Intel Core i7 processor. The primary
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Figure 2: (a): Suspended load used during the presented flight tests. (b): An annotated image of the
GTMax vehicle test platform.

process performs the basic functionality needed for navigation, guidance, and control of the vehicle. An
adaptive neural network model inversion flight controller, the vehicle’s baseline controller, was used for
all simulation studies and the presented flight test [53]. The secondary process is used to perform image
capture and processing needed for the presented load state estimator. In addition, the proposed trajec-
tory optimization framework was executed in the secondary process. Figure 7 shows an overview of the
proposed computational architecture.

The suspended load weighs 8.4 pounds and is attached to the vehicle with a 46 foot braided nylon line.
The bucket is sealed with a white cover to assist with tracking as discussed in Section 5. In addition, the
load can be jettisoned by the safety pilot with a radio transmitter. Figure 2a shows the suspended load
used in the flight test.

The Georgia Tech UAV Simulation Tool (GUST), developed at the UAVRF, is used to simulate flight
tests in order to demonstrate the efficacy of the proposed trajectory optimization framework [54, 55].
GUST contains a high-fidelity vehicle and environment model, onboard flight control software, and ground
station software and is used for rapid development and testing of software and hardware for all aspects of
autonomous vehicle operation. The vehicle is represented with a rigid body six degree of freedom model
with additional engine, fuel, and rotor dynamics. In addition, the vehicle model simulates sensor noise,
communication delay, real world location, orientation, and actuator dynamics and saturation. Furthermore,
a simulated camera capturing rendered graphics is used to predict the real-time performance of vision-based
operations. External disturbances such as turbulence and wind are also simulated. The suspended load is
simulated by GUST with a rigid body six degree of freedom model with flexible cable dynamics.

In addition, aerodynamic loading is represented with a reduced order model based on a quasi-steady
aerodynamics, unsteady effects of body motion, and unsteady effects of vortex shedding [56]. This aero-
dynamic model significantly improves the fidelity of the suspended load simulation when compared to a
simple model that only considers quasi-steady drag. Preliminary flight tests show a good correspondence
between the model and the observed behavior of the load. Further details on the high fidelity aerodynamic
loading model and the preliminary flight tests results can be found in Reference [56].

5 Vision-Based Estimation of Load

The presented vision-based suspended load state estimator is an extension to the suspended load state
estimator previously presented in References [18] and [19]. The proposed framework provides estimates of
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the suspended load state (swing angle and rate) through augmentation of an existing vehicle navigation
system. The suspended load is not instrumented with any sensors and only images captured from a
downward facing camera provide sensing information. Furthermore, the estimated vehicle state is use to
drive the suspended load’s process model and an unscented Kalman filter produces estimation updates.

5.1 Process Model

The process and sensor model used in the presented framework are the same as those used in the estimator
presented in References [18] and [19]. The system model is reviewed here and the cited references are
referred to for further details.

A simple pendulum process model is used to described the suspended load system. Specifically, the
suspended load is modeled as a point mass where the position of the load is given by generalized coordinates
θw and φw (swing angles) which can be considered a 2-1 Euler angle rotation about the attachment point
on the vehicle. Figure 3.a shows the representation of the system. The modeled system evolves as

θ̈wL = − cos(θw) cos(φw)ẍha + sin(θw) cos(φw)(z̈ha − g), (58)

θ̇w(t0) = θ̇w0, θw(t0) = θw0, t ≥ 0,

φ̈wL = sin(θw) sin(φw)ẍha + cos(θw) sin(φw)(z̈ha − g)− cos(φw)ÿha, (59)

φ̇w(t0) = φ̇w0, φw(t0) = φw0,

where g is the gravitational constant, ẍha, ÿha, and z̈ha are the vehicle’s translational accelerations at
the attachment point in the inertial frame and L is the total length of the pendulum measured from the
attachment point to the center of mass of the load. The position of the load is given as

RI
l = RI

h + RI
ha +

 sin(θw) cos(φw)
sin(φw)

cos(θw) cos(φw)

L,
where RI

h is the position of the vehicle in the inertial frame, RI
l is the position of the load in the inertial

frame, and RI
ha is the vector from the center of mass of the vehicle to the attachment point expressed in

the inertial frame. Furthermore, the velocity of the load is computed as

Ṙ
I

l = Ṙ
I

h + Ṙ
I

ha +

 cos(θw) cos(φw) − sin(θw) sin(φw)
0 cos(φw)

− sin(θw) cos(φw) − cos(θw) sin(φw)

[ θ̇w
φ̇w

]
L.

5.2 Sensor Model

The sensor information extracted by processing the captured images from a downward facing camera is
the unit vector, Rh

cl, from the camera to the white disk on top of the load expressed in the vehicle frame.
The estimate of the load position relative to the attachment point of the helicopter is given by

R̂
I

al =

 sin(θ̂w) cos(φ̂w)

sin(φ̂w)

cos(θ̂w) cos(φ̂w)

L,
where θ̂w and φ̂w are the estimated swing angles. The predicted measurement, R̂

h

cl, needed to implement
an unscented Kalman filter is found as [57]

R̂
h

cl =
ThIR̂

I

al + Rh
ha −Rh

hc

|ThIR̂
I

al + Rh
ha −Rh

hc|
, (60)
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Figure 3: (a): Diagram of the process model used in the vision-based estimator. (b): Diagram of the
camera coordinate frame. Figures recreated from those found in Reference [19].

.

where Rh
hc is the vector from the center of mass of the vehicle to the camera in the vehicle frame, Rh

ha is
the vector from the center of mass of the vehicle to the helicopter attachment point in the vehicle frame,
and ThI is the transformation matrix from the inertial frame to the vehicle frame.

5.3 Image Capture and Processing

As previously mentioned, images from a downward facing camera are processed in order to obtain sensor
information to aid in the estimation of the suspended load state. In order to assist in localization a white
disc is placed on top of the load. A probability-based mapping is then computed on a gray-scaled image in
order to identify the likelihood that pixels from the image are centers to a white disk of a specified radius.
The pixels on the white disc are assumed to be sampled from a normal distribution parameterized with
user-defined mean and variance. Using the cumulative distribution function of a normal distribution the
mapping produces a score of how “white” the image around a pixel is:

S(r,s) =
∏

(i,j)∈R

1

2

(
1 + erf

(
P(r+i,s+j) − µ

σ
√

2

))
(61)

where S(r,s) ∈ [0, 1] is the pixel score, R is the set of pixel translations that approximates a disk of a desired
radius, P(r,s) ∈ [0, 255] is the gray-scale value of the (r, s) pixel where P(r,s) = 0 if the pixel is black and
P(r,s) = 255 if the pixel is white, and erf(·) is the error function. As shown in Figure 4, set R is defined as

R = {(i, j) : i, j ∈ N, |i|+ |j| ≤ r} (62)

where r is the radius of the disc. As an example, if a disc of unity radius is considered (r = 1) then
R = {(0, 0), (1, 0), (0, 1), (−1, 0), (0,−1)}. In order for a pixel to achieve a score close to unity all of
its neighboring pixels and itself should be “whiter than most other pixels” given the specified mean and
variance. If the pixel with the highest score meets user-defined minimum requirements a positive detection
of the load occurs. Figure 5 gives an example of the mapping produced by (61) given µ = 220, σ = 5 and
r = 2 (pixel values scaled to produce a post-processed gray-scaled image). Notice the white pixels in the
post-processed image correspond to the center of the load. The selection of r is determined by the length
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Figure 4: Depictions of the set R for a radius of 1 (a), 2 (b), and 3 (c).
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Figure 5: (a): Typical image from a flight test. (b): The post-processed image when µ = 220, σ = 5 and
r = 2.

of the cable and the camera resolution. Furthermore, if possible, σ and µ should be selected such that the
environment does not produce scores above the user-defined minimum.

Note the use of the cumulative distribution function of a normal distribution in equation (61) is arbi-
trary. Other functions that map pixel values on to [0, 1] can be used. However, in order for the function
to be effective a pixel should receive a very low score if one of its neighbors is significantly different from
the ideal pixel. Finally, it should be noted that the target disc can be made a different color depending
on the application. For example, the disc can be red or orange in operations with thick snow/ice on the
ground. In this case, a pixel will achieve a high score if its neighbors and itself are “more red than most
other pixels”. Appropriate changes to equation (61) can be made trivially.

Once a pixel is selected, the coordinates of the pixel (px, py), as shown in Figure 3.b, are used to
compute the sensed unit vector from the camera to the load. First, the coordinate py is scaled based on
the image dimensions as p̄y = lx

ly
py where lx and ly are the width and height of the image in pixels. Next,

characteristic angles are computed as

θp = ρ
√
p2
x + p̄2

y, and φp = atan2(p̄y, px) (63)

where ρ is the ratio of the field of view in radians and the width in pixels of the image. The sensed unit
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Figure 6: Diagram of the modeled suspended load system.

vector from the camera to the load can then be computed as

Rh
cl = Thc

 cos(θp)
sin(θp) cos(φp)
sin(θp) sin(φp)

 ,
where Thc is the transformation matrix from the camera frame to the vehicle frame.

6 Trajectory Optimization Framework

The proposed trajectory optimization framework is presented in this section. The framework utilizes the
DDP algorithm to obtain optimized vehicle trajectories in a receding horizon fashion. A simplified sys-
tem model that captures the fundamental pendulum-like dynamics of the system is used. The simplified
representation causes the optimization procedure not to be overly complex while ensuring that the out-
putted solution can be used to guide the coupled rotorcraft and suspended load system. Furthermore, the
presented variational integrator allows for reliable propagation of the system configuration and results in
a faithful representation of the linearization of the discrete system dynamics.

6.1 System Model and Cost Function

Since guidance (not control) was the goal of the optimization framework a simplified model was used to
represent the complex rotorcraft and suspended load system. The model consist of two point masses under
a gravitational field with a holonomic constraint restricting the distance between them to equal a defined
length. Furthermore, three control forces can accelerate the mass representing the vehicle. Figure 6 shows
a depiction of the simplified model. Variational integrators were used to propagate and linearize the system
in the DDP algorithm. As discussed in Section 2.2, the variational integration ensures that each discrete
system configuration will observe the defined constraint. The Lagrangian of the system is given as

L(q, q̇) =
1

2
M(ẋ2

v + ẏ2
v + ż2

v) +
1

2
m(ẋ2

l + ẏ2
l + ż2

l ) +mgzl +mgzv, (64)
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where q = [xv, yv, zv, xl, yl, zl]
T, M is the mass of the vehicle, and m is the mass of the load. The holonomic

constraint is defined as

h(q) = (xv − xl)
2 + (yv − yl)

2 + (zv − zl)
2 − L2, (65)

where L is the cable length (slacked lines not considered). Finally, the left and right discrete forces needed
to evaluate the constrained-forced DEL equations (25) are defined as

F±d (qk, qk+1, uk) =
[

1
2
ux∆t

1
2
uy∆t

1
2
uz∆t 0 0 0

]T
(66)

where ∆t is the discretization time step. A variational integrator can be defined for the simplified model
by using equations (27) and (28).

The reference trajectory based cost function used in the optimization process is given as

J(q, u, t) =

∫ tf

t0

(
wq(q(τ)− qref(τ))2 + wv(q̇(τ)− q̇ref(t))

2 + wu(u(τ)− utrim(t))2
)

dτ

+ wf(q(tf)− qref(tf))
2. (67)

where (qref(t), q̇ref(t)) is a reference system trajectory, wq, wv ≥ 0 are the state tracking error cost matrices,
wf ≥ 0 is the final state tracking error cost matrix, and wu > 0 is the control cost matrix. Though the
reference system trajectory should be reasonable (i.e. limited vehicle velocity, acceleration and jerk), it does
not have to be dynamically feasible. For example, a reference trajectory with no load swing (xv(t) = xl(t)
and yv(t) = yl(t)) is valid.

The DDP algorithm outlined in Section 3 was implemented to solve the presented trajectory opti-
mization problem in real-time. The initial nominal discrete inputs and its associated state trajectory
were the output of the previous optimization cycle shifted to the current initial time t0. Furthermore,
during each optimization cycle a maximum of 5 iterations were performed before a control and state
trajectory were outputted. The time horizon (tf − t0) was 12 seconds and ∆t = 0.1. In addition, the
cost parameters were defined as wq = diag([0.5, 0.5, 0.5, 3.0, 3.0, 3.0]), wv = diag([0.5, 0.5, 0.5, 3.0, 3.0, 3.0]),
wu = diag([1.0, 1.0, 1.0]), and wf = diag([0.5, 0.5, 0.5, 2.0, 2.0, 2.0]).

The Armijo search parameters were set as κ = 1 × 10−5 and β = 0.7 and the maximum number of
possible Armijo iterations was set to 15. If the Armijo search failed (i.e. the Armijo cost criteria was not
met after 15 iterations) the current optimization cycle was terminated and the current nominal input and
state trajectory were outputted. Furthermore, if

∑N−1
K=1

(
LT
x (xk, uk)δx

?
k+LT

u (xk, uk)δu
?
k

)
+hT

x (xN , uN)δx?N <
1 × 10−6 the optimization cycle was terminated and the current nominal input and state trajectory were
outputted.

6.2 Integration

Figures 7 and 8 give an overview of how the proposed optimization framework can be integrated into
an existing onboard computer. It is assumed the existing guidance, navigation, and control system is
able to follow reasonable reference trajectories relatively accurately. A second thread in the secondary
process is used exclusively to solve the DDP algorithm. As a result, other procedures executed in the
secondary process (i.e. image-based sensing, communication to primary process, etc.) are not affected
by the computationally heavy optimization procedure. Simulation studies and flight tests have shown
that the stored optimization solution is updated at an average rate faster the 10 Hertz. Note that the
computational time is much smaller than the optimization horizon of 12 seconds. Therefore, as confirm in
simulation and flight tests, real-time trajectory optimization is achieved by the proposed framework.
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Figure 7: Overview of the implemented communication and computation architecture.

7 Simulation Implementation Results

In order to test the effectiveness of the proposed framework a set of 3 basic maneuvers were performed.
First, it was ensured that the vehicle could maintain the load at a fixed location (Maneuver 1: Hover).
In order to test for robustness in simulation, the response to a instant change in load velocity was also
investigated. The second reference trajectory travels in-between two way-points with a given prescribed
maximum velocity and acceleration (Maneuver 2: Way-point). Maneuver 2 reference trajectory was gen-
erated using a maximum velocity and acceleration of 10 feet/sec and 2 feet/sec2, respectively, and traveled
about 46 feet and 115 feet along the x-axis and y-axis, respectively. The third reference trajectory was con-
structed to inscribe a circle with a 50 foot radius every 75 seconds such that its tangential velocity is 4.19
feet/sec (Maneuver 3: Circle). The reference trajectories for the load and the vehicle were identical except
for a offset in the altitude. Therefore, the generated reference trajectories are not dynamically feasible.
However, note that the consider cost function, presented in equation (67), penalizes deviations associated
with the load more than vehicle deviations. As a result, the optimization process favors adjusting the
vehicle’s trajectory in order to maintain the load closer to the reference trajectory.

In addition to simulating the proposed framework, the response of the system when the vehicle’s
trajectory was not optimized was simulated. The optimized and unoptimized responses are compared in
order to assess the benefits of using the proposed optimization framework. Furthermore, simulation studies
were conducted in which the proposed framework was utilized when the navigation solution was error free.
That is, the navigation output matched the simulated system states. The effects of the navigation’s solution
estimation error are evaluated.

7.1 Unoptimized Response

This section presents results obtained from simulations studies where no optimized trajectory was computed
and the reference trajectory was used in its place. Therefore, the vehicle simply followed the generated
reference trajectory without any consideration of the response of the load or a cost function. Figure 9
shows the trajectory history of the load when Maneuver 1 was performed. At t = 157.80 the velocity of the
load along the x-axis was instantaneously change to 10 feet/sec. Note that the velocity of the load slowly
decays and the load retains a 12 foot oscillation at about 30 seconds after the induce velocity disturbance.
Figures 10 and 11 show the trajectory history of the load when Maneuver 3 was performed. As seen in
Maneuver 1, large load oscillations are found in the trajectory history. Note the large oscillations along
the y-axis at the beginning of the maneuver and those along the x-axis at the end of the maneuver.
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Figure 8: Overview of the optimization trajectory optimization process.

7.2 Differential Dynamic Programming Implementation

This section presents results obtained from simulations studies where the proposed trajectory optimization
framework was used. Figure 12 shows the trajectory history of the load when Maneuver 1 was performed.
At t = 112.72 and t = 150.88 the velocity of the load along the x-axis was instantaneously change to
5 feet/sec and 10 feet/sec, respectively. Note that the vehicle is able to maintain the load close to the
desire position and at “steady state” the load tracking error is always less than 2.5 feet. Furthermore, the
system is able to decrease the velocity of the load after the induced disturbance. Figure 13 shows the load
position estimation errors (or residuals). Note that there is a bias in both directions. These biases are
caused by errors in the vehicle’s navigation solution and, in particular, by the estimation error in attitude
and accelerometer bias terms. Any error in the estimate of the vehicle’s state affects the sensor model
used to update the estimate of the load’s state. As shown in Figure 12, these biases are manifested in the
trajectory history of the load. Figures 14 and 15 shows the trajectory history of the load when Maneuver
2 was performed. Though experiencing large tracking errors during transitional portions of the reference
trajectory the suspended load is able to track the reference trajectory generally well. As shown in Figure
15 some of the tracking error is caused by a delayed response. Figures 16 and 17 shows the trajectory
history of the load when Maneuver 3 was performed. Note that following an initial transient phase the
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Figure 9: Simulation-Unoptimized Maneuver 1 (a) and (b): Load position as a function of time along the
x-axis and y-axis, respectively. Solid and dotted lines represent the load state and reference trajectory,
respectively. (c): Load velocity as a function of time. Solid and dotted lines represent the velocity along
the x-axis and y-axis, respectively.
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Figure 10: Simulation-Unoptimized Maneuver 3 (a): Phase plot of the maneuver. (b) and (c): Load
position as a function of time along the x-axis and y-axis, respectively. Solid and dotted lines represent
the load state and reference trajectory, respectively.

load is able to track the reference trajectory with a relatively small error.

7.3 Effect of State Estimator Error

This section presents results obtained from simulations studies where the proposed trajectory optimization
framework was used and, in addition, the system’s navigation solution was error free (estimated state
equaled simulated state). Therefore, the performance of the framework can be judged without considering
the detrimental affects of the navigation solution. Figure 18 shows the trajectory history of the load
when Maneuver 1 was performed. At t = 107.87 and t = 151.04 the velocity of the load along the x-axis
was instantaneously change to 5 feet/sec and 10 feet/sec, respectively. Note that the vehicle is able to
maintain the load close to the desire position and at “steady state” the load tracking error is negligible.
Furthermore, the system is able to decrease the velocity of the load at a faster rate when compared to
the trajectory shown in Figure 12. Therefore, the performance of the framework can be improved if the
navigation solution of the vehicle and the load is improved.
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Figure 11: Simulation-Unoptimized Maneuver 3 (a) and (b): Load velocity as a function of time. Solid
and dotted lines represent the load state and reference trajectory, respectively. (c): Position tracking
error as functions of time. Solid and dotted lines represent the tracking error along the x-axis and y-axis,
respectively.
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Figure 12: Simulation-DDP Maneuver 1 (a) and (b): Load position as a function of time along the x-
axis and y-axis, respectively. Solid and dotted lines represent the load state and reference trajectory,
respectively. (c): Load velocity as a function of time. Solid and dotted lines represent the velocity along
the x-axis and y-axis, respectively.
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Figure 13: Simulation-DDP Maneuver 1 (a) and (b): The estimation error of the load’s position along the
x-axis and y-axis, respectively.

8 Flight Test Results

This section presents results obtained from a flight test where the proposed trajectory optimization frame-
work was utilized. The flight test was perform on March 18, 2015 at around 10am. An air temperature of

20



−80 −60 −40 −20 0 20 40
−120

−100

−80

−60

−40

−20

0

20
Maneuver 2, Phase Plot

P
os

iti
on

 o
f t

he
 L

oa
d,

 Y
−a

xi
s

Position of the Load, X−axis

 

 

Reference
Controlled Load

(a)

55 60 65 70 75 80 85

−80

−60

−40

−20

0

20

40

Maneuver 2, X−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 X
−a

xi
s

Time (sec)

(b)

55 60 65 70 75 80 85
−120

−100

−80

−60

−40

−20

0

20
Maneuver 2, Y−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 Y
−a

xi
s

Time (sec)

(c)

Figure 14: Simulation-DDP Maneuver 2 (a): Phase plot of the maneuver. (b) and (c): Load position as a
function of time along the x-axis and y-axis, respectively. Solid and dotted lines represent the load state
and reference trajectory, respectively.
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Figure 15: Simulation-DDP Maneuver 2 (a) and (b): Load velocity as a function of time. Solid and dotted
lines represent the load state and reference trajectory, respectively. (c): Position tracking error as functions
of time. Solid and dotted lines represent the tracking error along the x-axis and y-axis, respectively.
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Figure 16: Simulation-DDP Maneuver 3 (a): Phase plot of the maneuver. (b) and (c): Load position as a
function of time along the x-axis and y-axis, respectively. Solid and dotted lines represent the load state
and reference trajectory, respectively.

63.3 degrees Fahrenheit and a wind speed of 2.3 miles per hour in varied directions was reported for area
code 31805 by Weather Undergound.

Figures 19 and 20 shows the estimated trajectory history of the load when Maneuver 2 was performed.
Note that the response of the system is very similar to the response seen in simulation (Figures 14 and 15).
As expected, the tracking errors in the flight test are larger than the ones seen in simulation. However,
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Figure 17: Simulation-DDP Maneuver 3 (a) and (b): Load velocity as a function of time. Solid and dotted
lines represent the load state and reference trajectory, respectively. (c): Position tracking error as functions
of time. Solid and dotted lines represent the tracking error along the x-axis and y-axis, respectively.

100 120 140 160 180 200 220
−6

−4

−2

0

2

4

6

8

10

12
Maneuver 1, X−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 X
−a

xi
s

Time (sec)

 

 

Reference
Controlled Load

(a)

100 120 140 160 180 200 220
−6

−4

−2

0

2

4

6

8

10

12
Maneuver 1, Y−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 Y
−a

xi
s

Time (sec)

(b)

100 120 140 160 180 200 220
−8

−6

−4

−2

0

2

4

6

8

10
Maneuver 1

V
el

o
ci

ty
 o

f 
th

e 
L

o
ad

Time (sec)

 

 

x−axis
y−axis

(c)

Figure 18: Simulation-DDP (with error free navigation) Maneuver 1 (a) and (b): Load position as a
function of time along the x-axis and y-axis, respectively. Solid and dotted lines represent the load state
and reference trajectory, respectively. (c): Load velocity as a function of time. Solid and dotted lines
represent the velocity along the x-axis and y-axis, respectively.

given that the length of the line is 46 feet and the system is subject to environmental factors, like wind,
a tracking error of about 6 feet is reasonable. Furthermore, the estimation bias shown in simulation
may also have contributed to the tracking errors. Figures 21 and 22 show the trajectory history of the
load when Maneuver 3 was performed. As seen in the previous maneuver, the results obtained through
simulation studies are very similar to those obtained in the flight test. Figure 23 shows the histograms of
the computational times related to image processing and trajectory optimization when Maneuver 3 was
performed. In the recorded data set the computational time required to perform an optimization cycle
(maximum of 5 iterations) had a mean of 0.0965 seconds and a standard deviation of 0.0167. This relatively
small computational time allowed for real-time trajectory optimization and is possible due to the large
discretization time step facilitated by the use of a variational integrator. Furthermore, the computational
time required to process an image required for load state estimation had a mean of 0.1329 seconds and
a standard deviation of 0.005. When compared to other sensors used onboard for vehicle navigation this
“sensor” has a relatively slow update rate.

9 Analysis of Results

By comparing Figures 9 and 10 with Figures 12 and 16 it can be seen that the load tracking error is
significantly reduced when the vehicle trajectory is optimized. Furthermore, the trajectory of the load
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Figure 19: Flight Test-DDP Maneuver 2 (a): Phase plot of the maneuver. (b) and (c): Load position as a
function of time along the x-axis and y-axis, respectively. Solid and dotted lines represent the estimated
load state and reference trajectory, respectively.
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Figure 20: Flight Test-DDP Maneuver 2 (a) and (b): Load velocity as a function of time. Solid and dotted
lines represent the estimated load state and reference trajectory, respectively. (c): Position tracking error
as functions of time. Solid and dotted lines represent the estimated tracking error along the x-axis and
y-axis, respectively.

−100 −80 −60 −40 −20 0
−60

−40

−20

0

20

40

60
Maneuver 3, Phase Plot

P
os

iti
on

 o
f t

he
 L

oa
d,

 Y
−a

xi
s

Position of the Load, X−axis

 

 

Reference
Flight Test
Simulated

(a)

0 50 100 150
−100

−80

−60

−40

−20

0

20
Maneuver 3, X−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 X
−a

xi
s

Time (sec)

(b)

0 50 100 150
−60

−40

−20

0

20

40

60
Maneuver 3, Y−Axis

P
os

iti
on

 o
f t

he
 L

oa
d,

 Y
−a

xi
s

Time (sec)

(c)

Figure 21: Flight Test-DDP Maneuver 3 (a): Phase plot of the maneuver. (b) and (c): Load position as a
function of time along the x-axis and y-axis, respectively. Solid and dotted lines represent the estimated
load state and reference trajectory, respectively.
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Figure 22: Flight Test-DDP Maneuver 3 (a) and (b): Load velocity as a function of time. Solid and dotted
lines represent the estimated load state and reference trajectory, respectively. (c): Position tracking error
as functions of time. Solid and dotted lines represent the estimated tracking error along the x-axis and
y-axis, respectively.
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Figure 23: Maneuver 1 (a): Histogram of the trajectroy optimization cycle computational times. The
recorded data set had a mean of 0.0965 seconds and a standard deviation of 0.0167. (b): Histogram of
image processing computational times. The recorded data set had a mean of 0.1329 seconds and a standard
deviation of 0.005.
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is more oscillatory in the unoptimized case. Therefore, the proposed optimization framework provides a
significant improvement in the performance of the rotorcraft and suspended load system. Figure 23 demon-
strates that the proposed framework is real-time implementable due to its relatively small computation
time. It should be noted that any required computation, primary and second processes, is done onboard.
Furthermore, note that the presented simulation studies predicted data collected during the flight test.
The discrepancies between the simulation studies and the flight test were expected due to environmental
and other unmodeled factors. However, it can be expected that further simulation studies where different
or more aggressive reference trajectories are implemented will reasonably predict the performance of the
framework during a flight test.

The results presented in Section 7.3 suggest that a limiting factor of the presented framework is the
accuracy of the vehicle’s and suspended load’s navigation solution. However, it should be noted that the
vehicle’s navigation solution is far more accurate than the load’s. Therefore, a significant improvement in
the framework’s performance is expected if a more accurate load sensor is used (e.g. an attached GPS,
attachment point encoder, etc.), though additional hardware will be needed. The reference trajectories, in
particular Maneuver 2, can also be redefined to be more realistic. Currently, the reference trajectories do
not have any imposed constraints on jerk and snap and, therefore, the acceleration of reference trajectories
changes instantaneously. The large initial tracking errors seen in Figures 15.C and 20.C should be reduced
if the reference trajectories were constrained by defined jerk and snap limits. These limits can be define
very naturally by the operational limits of the vehicle.

10 Conclusion

A trajectory optimization framework for autonomous suspended load operations is proposed. The iteration-
based differential dynamic programming algorithm was used to provide guidance to an existing unmanned
vehicle system. Using a simplified, but representative, model ensured that the optimization procedure was
not overly complex but still provided effective guidance to the vehicle. Variational integrators were used
to propagate and linearize the system model in the DDP algorithm. Previous studies have shown that
DDP algorithms utilizing variational integrators are far less affected, when compared to utilizing Euler’s
methods, by changes to the discretization time step. As a result, the utilized variational integrator enabled
the use of a relatively large time step and, therefore, reduced the computational burden of the implemented
DDP algorithm. The main contribution of this paper is the demonstration, both in simulation and in
flight test, of an on-board and real-time implementable trajectory optimization framework. Simulation
studies and a flight test demonstrated the effectiveness of the proposed framework. Unlike previously
proposed feedback and input shaping methods, the proposed trajectory optimization framework provides
a foundation in which more complex objectives, including state and input constraints, obstacle avoidance,
flight time optimization, and aggressive maneuvering, can be studied and implemented.
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